Close

We use cookies to improve your experience of our website. Privacy Policy

Skip to main content

Materials Research Institute

Search
Menu

Dr Mark Baxendale

Mark Baxendale

Reader in Nanotechnology

School of Physics and Astronomy
G O Jones 122, Mile End
+44 (0)20 7882 5795

www.qmul.ac.uk/spa/people/academics/profiles/mbaxendale.html

Research

carbon nanotubes, nanotechnology, metrology, thermoelectrics

Research Interests

My overarching research interest is in self-organisation and emergent phenomena in the physical and life sciences. Nanotechnology - the understanding, characterisation, and manipulation of matter on the scale of several atoms to large macromolecules - is the vehicle for this activity. My prime focus is on the science and applications nanoscale carbon macromolecules (fullerenes, carbon nanotubes, and graphene) - considered to be the archetypal building blocks of nanotechnology - in the physical and life sciences. I also have the related interests: nano-bio interface phenomena, percolation in molecular networks, quantum electronic phenomena, and nanoscale magnetism.

My current activity spans:

  • Targeted drug delivery systems
  • Magnetic hyperthermia cancer therapy
  • Transparent conducting electrodes for plastic electronics
  • Thermoelectric materials for energy harvesting
  • Smart tissue scaffold for regenerative medicine.
  • Single molecule detection
  • Quantum electronic devices
  • Multifunctional composite materials

Affilitions:

Publications of specific relevance to Materials Research

Publications

2020

  • TANG W, Zhang J, RATNASINGHAM SR, Liscio F, CHEN K, Liu T, Wan K, Suena Galindez E, Bilotti E, Reece M, Baxendale M, Milita S, McLachlan M, Su L and Fenwick O (2020). Substitutional doping of hybrid organic-inorganic perovskite crystals for thermoelectrics. Royal Society of Chemistry (Rsc)  Journal of Materials Chemistry A  10.1039/d0ta03648j

2019

  • Qiu M and Baxendale M (2019). Quantum-tunneling controlled thermoelectricity in polymers. Elsevier Bv  Organic Electronics  105553-105553. 10.1016/j.orgel.2019.105553
  • Wan K, Taroni PJ, Liu Z, Liu Y, Tu Y, Santagiuliana G, Hsia I, Zhang H, Fenwick O, Krause S, Baxendale M, Schroeder BC and Bilotti E (2019). Flexible and Stretchable Self‐Powered Multi‐Sensors Based on the N‐Type Thermoelectric Response of Polyurethane/Na x (Ni‐ett) n Composites. Wiley  Advanced Electronic Materials  1900582-1900582. 10.1002/aelm.201900582
  • Boi FS, Zhang X, Odunmbaku O, Xia JC, Taallah A and Baxendale M (2019). Magnetic ordering and interactions in iron-filled carbon foam. Materials Today Chemistry  vol. 12, 261-265. 10.1016/j.mtchem.2019.03.003

2018

2017

2016

  • Boi FS, Guo J, Wang S, He Y, Xiang G, Zhang X and Baxendale M (2016). Fabrication of cm scale buckypapers of horizontally aligned multiwalled carbon nanotubes highly filled with Fe3C: The key roles of Cl and Ar-flow rates. Chemical Communications  vol. 52, (22) 4195-4198. 10.1039/c5cc10533a

2015

  • Peci T and Baxendale M (2015). Length and α-Fe Content Control of Self-Organised Ferromagnetic Nanowires Encapsulated by Multiwalled Carbon Nanotubes by Low Flow-Rate CVD. Carbon  10.1016/j.carbon.2015.11.038
  • Peci T, Dennis TJS and Baxendale M (2015). Iron-filled multiwalled carbon nanotubes surface-functionalized with paramagnetic Gd (III): A candidate dual-functioning MRI contrast agent and magnetic hyperthermia structure. Carbon  vol. 87, (C) 226-232. 10.1016/j.carbon.2015.01.052

2014

  • Boi FS, Maugeri S, Guo J, Lan M, Wang S, Wen J, Mountjoy G, Baxendale M, Nevill G, Wilson RM, He Y, Zhang S and Xiang G (2014). Controlling the quantity of α-Fe inside multiwall carbon nanotubes filled with Fe-based crystals: The key role of vapor flow-rate. Aip Publishing Llc  Applied Physics Letters  vol. 105, (24) 243108-243114. 10.1063/1.4904839
  • Bikkarolla SK, Baxendale M, Ewels C, Enoki T, Kaneko K, Martín N, Santa-Cruz P, Edwards R, Khanam Z, Zitoun D, Ajayan P, Khare V, Zöpfl A, Gspann T, Ogihara H, Shaffer M, Coleman K, Chan-Park M, Papakonstantinou P, Ozden S, Bârsan OA, Windle A and Kinloch I (2014). Applications, composites, and devices: general discussion. Faraday Discuss  vol. 173, 429-443. 10.1039/C4FD90046D
  • Davies P, Papakonstantinou P, Martin N, Kratochvílová I, Ewels C, Shaffer M, Enoki T, Heggie M, Gspann T, Turak A, Bârsan OA, Zitoun D, Ajayan P, Mooring L, Khare V, Zöpfl A, Hirsch A, Baxendale M, Costa P, Falko V, Casado J, Hui LS, Windle A, Sinitskii A, Rosseinksy M and Nguyen T (2014). Synthesis in gas and liquid phase: general discussion. Faraday Discuss  vol. 173, 115-135. 10.1039/c4fd90042a
  • Boi FS, Wilson RM, Mountjoy G, Ibrar M and Baxendale M (2014). Boundary layer chemical vapour synthesis of self-organised ferromagnetically filled radial-carbon-nanotube structures. Faraday Discussions  vol. 173, 67-77. 10.1039/c4fd00071d

2013

  • Boi FS, Mountjoy G, Wilson RM, Luklinska Z, Sawiak LJ and Baxendale M (2013). Multiwall carbon nanotubes continuously filled with micrometre-length ferromagnetic α-Fe nanowires. Carbon  vol. 64, 351-358. 10.1016/j.carbon.2013.07.085
  • Boi FS, Mountjoy G, Luklinska Z, Spillane L, Karlsson LS, Wilson RM, Corrias A and Baxendale M (2013). The origin of long-period lattice spacings observed in iron-carbide nanowires encapsulated by multiwall carbon nanotubes. Microsc Microanal  vol. 19, (5) 1298-1302. 10.1017/S1431927613001918
  • Boi FS, Mountjoy G and Baxendale M (2013). Boundary layer chemical vapor synthesis of self-organized radial filled-carbon-nanotube structures. Elsevier/Science Direct  Carbon  vol. 64, 516-526. 10.1016/j.carbon.2013.08.001
  • McAndrew CF and Baxendale M (2013). High electrical conductance enhancement in Au-nanoparticle decorated sparse single-wall carbon nanotube networks. Nanotechnology  vol. 24, (30) 10.1088/0957-4484/24/30/305202
  • Boi FS, Mountjoy G, Wilson RM, Luklinska Z, Sawiak LJ and Baxendale M (2013). Multiwall carbon nanotubes continuously filled with micrometre-length ferromagnetic α-Fe nanowires. Carbon  10.1016/j.carbon.2013.07.085

2012

  • Feizi E, Scott K, Baxendale M, Pal C, Ray AK, Wang W, Pang Y and Hodgson SNB (2012). Synthesis and characterisation of nickel nanorods for cold cathode fluorescent lamps. Materials Chemistry and Physics  vol. 135, (2-3) 832-836. 10.1016/j.matchemphys.2012.05.066
  • Feizi E, Scott K, Baxendale M, Pal C, Ray AK, Wang W, Pang Y and Hodgson SNB (2012). Synthesis and characterisation of nickel nanorods for cold cathode fluorescent lamps. Materials Chemistry and Physics  10.1016/j.matchemphys.2012.05.066

2010

  • Bilotti E, Zhang R, Deng H, Baxendale M and Peijs T (2010). Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres. Journal of Materials Chemistry  vol. 20, (42) 9449-9455. 10.1039/c0jm01827a
  • McClory C, McNally T, Baxendale M, Pötschke P, Blau W and Ruether M (2010). Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality. European Polymer Journal  vol. 46, (5) 854-868. 10.1016/j.eurpolymj.2010.02.009
  • Hudziak S, Darfeuille A, Zhang R, Peijs T, Mountjoy G, Bertoni G and Baxendale M (2010). Magnetoresistive phenomena in an Fe-filled carbon nanotube/elastomer composite. Nanotechnology  vol. 21, (12) 10.1088/0957-4484/21/12/125505

2009

  • Ciselli P, Zhang R, Wong Z, Reynolds CT, BAXENDALE M and Peijs T (2009). Oriented UHMW-PE/CNT Composite Tapes by a Solution Casting-Drawing Process Using Mixed-Solvents. European Polymer Journal  vol. 45, (10) 2741-2748. 10.1016/j.eurpolymj.2009.06.004
  • Baxendale M, Battini P, Pollini I, Endo M, Kim YA, Hayashi T and Muramatsu H (2009). Quantum conductance in double-wall carbon nanotubes grown by chemical vapor deposition. Phys Rev B  vol. 80, (12) 10.1103/PhysRevB.80.125411
  • Zhang R, Dowden A, Deng H, Baxendale M and Peijs T (2009). Conductive network formation in the melt of carbon nanotube/thermoplastic polyurethane composite. Composites Science and Technology  vol. 69, (10) 1499-1504. 10.1016/j.compscitech.2008.11.039
  • Morgan C, Alemipour Z and Baxendale M (2009). Variable range hopping in oxygen-exposed single-wall carbon nanotube networks (vol 205, pg 1394, 2008). Phys Status Solidi A  vol. 206, (7) 1678-1678. 10.1002/pssa.200925122

2007

  • Baxendale M, Melli M, Alemipour Z, Pollini I and Dennis TJS (2007). Quantum conductance in single- and double-wall carbon nanotube networks. J Appl Phys  vol. 102, (10) 10.1063/1.2817623
  • Andzane J, Tobin JM, Li Z, Prikulis J, BAXENDALE M, Olin H, Holmes JD and Erts D (2007). Selection of Application Specific Single and Multi Walled Carbon Nanotubes by In Situ Characterization of Conductive and Field Emission Properties. Journal of Nanotechnology Online  10.2240/azojono0123
  • Zhang R, Baxendale M and Peijs T (2007). Universal resistivity-strain dependence of carbon nanotube/polymer composites. Phys Rev B  vol. 76, (19) 10.1103/PhysRevB.76.195433

2006

2005

2004

  • Rajendra J, Baxendale M, Dit Rap LG and Rodger A (2004). Flow linear dichroism to probe binding of aromatic molecules and DNA to single-walled carbon nanotubes. J Am Chem Soc  vol. 126, (36) 11182-11188. 10.1021/ja048720j
  • BAXENDALE M, Laurent C, Ahlskog C and Huhtula M (2004). Electronic Properties and Applications of Carbon Nanotubes. Encyclopaedia of Nanoscience and Nanotechnology , Editors: Nalwa HS. American Scientific Publishers 

2003

2002

  • Charlier JC, Terrones M, Baxendale M, Meunier V, Zacharia T, Rupesinghe NL, Hsu WK, Grobert N, Terrones H and Amaratunga GAJ (2002). Enhanced electron field emission in B-doped carbon nanotubes. Nano Lett  vol. 2, (11) 1191-1195. 10.1021/nl0256457

2001

  • Gunster J, Baxendale M, Otani S and Souda R (2001). Growth of individual carbon composite nanostructures on the faceted TiC(111) surface. Surf Sci  vol. 494, (1) L781-L786. 10.1016/S0039-6028(01)01508-4

2000

  • Alexandrou I, Baxendale M, Rupesinghe NL, Amaratunga GAJ and Kiely CJ (2000). Field emission properties of nanocomposite carbon nitride films. J Vac Sci Technol B  vol. 18, (6) 2698-2703. 10.1116/1.1322043
  • BAXENDALE M, Lim KG and Amaratunga GAJ (2000). Thermoelectric power of aligned and randomly oriented carbon nanotubes. American Physical Soc  Physical Review B  vol. 61, (19) 12705-12708. 10.1103/PhysRevB.61.12705